

GFR-He/CO₂ Analysis Using RELAP5/ATHENA

Theron D. Marshall, PhD

August 26, 2004

Outline of Presentation

- Gen-IV, <u>Gas-cooled Fast Reactor concept</u>
 - Looking beyond the <u>Next Generation Nuclear</u>
 <u>Plant</u>
- Impetus for Safety Analysis
 - Is passive safety inherently safe?
- The Large-Break LOCA
 - One of the most severe GFR challenges
- RELAP5/ATHENA Input Model
- Modeling Predictions
 - What the numbers imply
- Conclusions

What is the Gen-IV GFR Reactor Concept?

- Has design specifications of:
 - being inherently safe
 - using direct Brayton
 cycle energy
 conversion with the He option
 - featuring high outlet temperatures, which increase thermal efficiency and suggest H₂ production

GFR – Looking beyond the NGNP

- Anticipated deployment: 2025
- Neutron flux of 1 x 10¹⁴ n/cm²-s
- Power density of <u>55 MW/m³</u> to 100 MW/m³
- Reference core configuration and fuel:
 - Plate/block, UC with SiC matrix
- Optional core configuration and fuel:
 - pin, U-Zr CERMET
- Reference core coolant:
 - He at 7 MPa [490 °C {in}, 842 °C {exit}]
- Optional core coolant:
 - CO₂ at 20 MPa [400 °C {in}, 550 °C {exit}]

GFR, NGNP – a difference in flow direction

NGNP with concentric inlet/outlet and downward flow through core

GFR with concentric inlet/outlet and <u>upward</u> flow through core

Impetus for Safety Analysis

- Gen-IV reactor concepts have the directive of having enhanced safety systems
- Ideally the reactors will circumvent an accident scenario with minimal operator intervention
- The high power density of the GFR will effectively challenge any Decay Heat Removal System (DHRS)
- A passively-safe GFR DHRS may require innovative components and engineering design
- Safety analyses and experiments are necessary to validate any DHRS designs

Challenge of the Large-Break LOCA

- A double guillotine break of the inlet and outlet legs
- Decay Heat: 13% [SCRAM], 1.5% [1 hr], 1.2% [2 hr] of 600 MW
- Gen-IV Objective:
 - Complete decay heat removal with a passive DHRS
 - DHRS should maintain temperature limits for a minimum time period of three days
- Maximum matrix temperature limit < 2000 °C

ATHENA Model: GFR Specifications

Coolants: He and S-CO₂

Fuel: UC with SiC matrix

- TiN radial reflector and BC neutron shield
- Overview of system parameters:

System Parameter	He	S-CO ₂
Power Level	600 MW _{th}	600 MW _{th}
Coolant Pressure	7 MPa	20 MPa
Inlet Temperature	490 °C	400 °C
Outlet Temperature	850 °C	550 °C
Mass Flow Rate	330 kg/s	3260 kg/s
Inlet Flow Area	8.35 m ²	8.35 m ²
Outlet Flow Area	6.42 m ²	6.42 m ²
Reactor Cavity Cooling System (RCCS)	GA-MHR	GA-MHR

Idaho National Engineering and Environmental Laboratory

ATHENA Model: GFR Core Cross Section

Core Parameter	Value
Thermal Power	600 MW _{th}
Average Power Density	50 MW/m ³
Axial Power Peaking	1.25
Core Height	1.7 m
Fuel Assemblies	127
Width of Fuel Assembly	20 cm
Coolant Holes/Assembly	91
Coolant Void Fraction	40 %

ATHENA Model: Unit Cell Heat Structure

ATHENA Model: Hydraulic Nodalization

Idaho National Engineering and Environmental Laboratory

ATHENA Model: Conduction Circuit

Idaho National Engineering and Environmental Laboratory

Core

Barrel

Shield

ATHENA Model: Core Nodalization

Idaho National Engineering and Environmental Laboratory

ATHENA Model: Radiation Circuit

ATHENA Model: Core, Containment, RCCS

Idaho National Engineering and Environmental Laboratory

ATHENA Model: Input Deck Specifics

- Heat Structures: 134
- Mesh Points: 725
- Hydrodynamic Volumes: 144
- Volume:
 - Coolant (He/CO₂): 6,608 m³
 - RCCS (air): $816 \, \text{m}^3$
- Mass:
 - He Coolant: 9,348 kg
 - CO₂ Coolant: 44,402 kg
 - RCCS 947 kg

ATHENA Model: Boundary Conditions

- Specified:
 - coolant inlet temperature [490°C, He] [400°C, CO₂]
 - coolant outlet temperature [842°C, He] [550°C, CO₂]
- Calculated:
 - coolant flow rate calculated during steady state to provide desired outlet plenum temperature
- Assumed:
 - SCRAM curve of PWR
 - No gamma/neutron heating in reflector/shield
 - Containment pressure maintained [~0.8 MPa, He]
 [~1.8 MPa, CO₂]
 - RCCS is the DHRS (baseline case)

Overview of ATHENA Steady-State Analysis

- Steady-State Analysis
 - determined by constant containment temperature
 - volumetric heat capacity decreased by factor of 100
 - problem time of 4,200 s

Overview of ATHENA Transient Analysis

- LB-LOCA Transient
 - problem time reset to0 s
 - valves open coolant loop to containment at 10 s
 - SCRAM starts at 10 s
 and finishes at 14 s
 - Problem time:180,000 s (50 hrs)

He Case Approaches Matrix Temp. Limit*

Containment Pres. Enhances Heat Transfer

Containment Volume: 6,063 m³

Containment Temp. Means More Design Work

Vessel Temperature Is A Design Challenge

CO₂ Downcomer Flow Shows Flow Reversal

Conclusions and Future Work

- The RELAP5 results compare well with expected temperature and pressure trends
- The temperature limit of the core matrix material may be reached when He is the coolant
- The densities of the two coolants play an important part in the DHRS performance
- Future work will include:
 - sensitivity studies on containment transient pressure
 - CO₂ injection for the He DHRS
 - Analysis with CERMET fuel pins